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Randomness, Chance, & Art
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The City College of New York, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

Randomness is a slippery term that conveys different meanings in different disciplines. In mathematics, 

an individual number is random when there is an equal chance for it to be any number from a set of pos-

sible values. In computer science the term becomes more relative and numbers have varying degrees of 

pseudo-randomness. Information theory equates randomness with unpredictability and, at odds with other 

deinitions,	concludes	that	a	higher	level	of	randomness	indicates	a	greater	concentration	of	information;	
a	message’s	probable	denseness	of	information	is	highest	when	the	message	is	partially	surprising	and	
partially	expected.There	is	no	ixed	deinition	for	what	randomness	means	in	art,	but	analogies	can	be	
drawn	to	how	the	term	is	used	in	other	ields.	For	example,	information	theory’s	deinition	might	suggest	
that	artworks	have	the	greatest	impact	when	using	a	mixture	of	pattern	and	unpredictability.	

INTRODUCTION

Randomness, if it exists at all, is a fragile state. 

This fragility isn’t intuitive to us; our day-to-day 

lives seem illed with disorder and unconnected 
events. The precarious nature of perfect order is 

more easily understood. We know that the nature 

of the universe is for things to break down, clutter, 

and fall apart. We have scientiic laws (the law of 
entropy) and folk laws (Murphy’s law) to explain 

why order cannot be maintained for long. With 

that in mind, perhaps it is more understandable 

that order’s opposite—randomness—is similarly 

rare. Just as it is the nature of the universe for 

things to fall apart, it is also the nature of the 

universe for a cause to exist for every effect and 

for that effect to be determinable (at non-quantum 

levels1). But a truly random event has no relation 

to its trigger; the effect should not be deducible 

from the cause. 

Look again at the very irst sentence of this 
introduction and note the caveat of if	it	exists	at	
all. The existence of randomness and the ability of 

humans to observe it is an ongoing debate. Knuth 

(1981) said, “People who think about this topic al-

most invariably get into philosophical discussions 
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about what the word ‘random’ means. In a sense, 

there is no such thing as a random number; for 

example, is 2 a random number?” (p. 2). The goal 

of the chapter is to give a deeper understanding 

of randomness, how it is generated in computer 

science, and how it can be used in art.

BACKGROUND

Random is often used colloquially to indicate 

arbitrariness or things unrelated: random acts of 

violence, random thoughts, random encounters. 

A number of ields such as computer science, 
statistics, and informational theory have more 

rigorous deinitions of randomness. But each of 
these ields uses the term in a way that is slightly 
at odds with the others. 

As a starting point, let’s establish what ran-

domness means to a mathematician and, using 

that, build a working deinition for what random-

ness might mean to an artist. In mathematics, an 

individual number is random when there is an 

equal chance for it to be any number from a set 

of possible values. When describing a sequence 

of numbers as random, we mean each number is 

statistically independent of the others; that the 

numbers in the series have no effect or relation 

to the others (Haahr, 2008). A random number 

or sequence is characterized as containing no 

meaningful information; if a number conveys 

some data (such as the result of a formula, a 

person’s phone number, or the number of times 

the letter ‘q’ appears in this chapter2), then it is 

not random. 

This trait of non-signiicance can be borrowed 
and used as a key characteristic of randomness 

in art. If an element in an artwork contains some 

meaningful information about the world around 

us, then the element isn’t truly random. Consider 

this recipe by Tristan Tzara (one of Dada’s found-

ers) for writing poetry: 

To Make A Dadist Poem

Take a newspaper.

Take some scissors.

Choose from this paper an article the length you 

want to make your poem.

Cut out the article.

Next	carefully	cut	out	each	of	the	words	that	make	
up this article and put them all in a bag.

Shake gently.

Next	take	out	each	cutting	one	after	the	other.
Copy conscientiously in the order in which they 

left the bag.

The poem will resemble you.

And	there	you	are--an	ininitely	original	author	of	
charming sensibility, even though unappreciated 

by the vulgar herd. (Brotchie, 1991, p. 36)

Would the resulting poem be random? Sev-

eral aspects of this poetry generation process do 

seem analogous to our description of a random 

numerical sequence. However, the poem’s recipe 

(or algorithm) is not rigorously random by math-

ematical standards. To improve the randomness 

of the process, we’d irst want to remove any 
duplicate words so that common words (such as 

“the”) wouldn’t have a greater frequency in the 

poem. Second, we’d want to make sure that the 

slips of paper have identical sizes (otherwise, the 

larger slips would tend to loat to the top upon being 
shaken and would bias our results). Finally, we’d 

need to question our basic ability to suficiently 
randomize the slips of paper by shaking a bag. 

Several early attempts to generate random num-

bers (for use in scientiic simulations) used slips 
of paper in bowls and bags, but were not able to 

generate suficient randomness (Hayes, 2001).3 

It isn’t necessarily important to resolve the 

aforementioned issues for a work of art. Statisti-

cally rigorous randomness may be crucial (though 

elusive) in computer science and mathematics, but 

it is usually more than is required for stochastic 

artworks. In fact, giving common words a greater 

probability may even be desired. Even if we did 

wish to adjust the poetry-generating algorithm 
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so that each word had a precisely equal chance 

of being drawn, we still wouldn’t have a truly 

random poem. The source material of the article 

would largely determine the poem’s content—a 

sports article would have an unusually large num-

ber of sports related words, a computer science 

article would be illed with computer jargon, and 
so on. The resulting poem would be unpredict-

able, yet through its vocabulary it would convey 

information. 

The conveyance of meaning is an important 

distinction for the art-focused terminology 

proposed in this chapter: random refers to an 

unpredictability that communicates no informa-

tion, whereas chance implies a basis in the real 

world, unpredictable yet meaningful. Stochastic 

describes randomness and chance either collec-

tively or non-speciically. A painting in which 
colors were selected by rolling dice would have a 

random palette. A painting in which colors were 

selected based on the color of passing cars would 

have a chance-based palette. Both palettes could 

be described as stochastic.

CHANCE VS. RANDOM

The distinction between chance and randomness 

in art is a convenient taxonomy, but not every 

stochastic work cleanly its into one category or 
the other. A painting’s color choices being based 

on the movement of a ball in a sports game might 

convey some sense of the game or may simply 

seem arbitrary and better described as random, 

despite being determined by real-world events.

Tim Hawkinson’s Emoter (2002) uses light 

sensors on a television screen to drive the facial 

expressions on a motorized photograph of the 

artist’s face. If we were to categorize Emoter, we 

might describe it as chance-based—the sculpture’s 

movements are triggered by whatever happens 

to be on television at a given moment. However, 

we might consider a fundamental characteristic 

of chance-based artwork to be the viewer having 

insight into the details of the cause and effect re-

lationship. Viewers of Emoter are able to deduce 

that the television screen’s image determines the 

photograph’s movement, but an understanding of 

what speciic television image traits result in which 
speciic motion remains elusive. The impression is 
one of random motion, even though the movement 

is deterministic; presumably if the television were 

playing a video repeatedly, each replay would 

result in the same facial performance. 

What may classify Emoter as a chance-based, 

rather than random, artwork is how crucial the 

relationship between the television screen and the 

facial expressions is to the work’s concept. The 

connection suggests that emotional reactions to 

television shows are as artiicial as the medium 
itself. The ever-changing, yet repetitive nature 

of the eerie face evokes the ever-changing, yet 

repetitive nature of television shows.

Sabrina Raaf’s4 Translator II: Grower (2004-

2005) is another work that is activated by chance 

Figure 1.

Image used with permission of Sabrina Raaf
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factors. The artwork consists of a small robot that 

slowly works its way around a room, hugging 

the walls. A sensor near the ceiling detects the 

room’s level of carbon dioxide and transmits the 

information to the robot. Every few seconds the 

robot draws a vertical green line on the wall—the 

higher the level of carbon dioxide, the taller the 

line. The lines become both a representation of 

grass and a bar graph tracking the carbon dioxide 

level (and consequently the presence of people) 

over time. The act of observing the artwork 

provides the chance stimulus that drives the art 

generation.

HOW RANDOM?

In the early and mid-1960s several researchers 

independently came to the conclusion that when 

looking at the randomness of a set of numbers, it 

makes little difference whether or not they were 

generated by a random process. What is more 

important than how the numbers were generated 

is how random the numbers appear to be (Chaitin, 

1975). For example, using coin tosses to gener-

ate a series of ones and zeros (ones representing 

heads and zeros representing tails), the series 

1010101010101010 is just as likely a result as the 

series 1011101001010111.5 However, if we deine 
“randomness” as the absence of a pattern, then 

the second set of numbers is random and the 

irst set is not. Of course the irst example’s pat-
tern is coincidental and one additional coin toss 

could have broken the pattern. But if we simply 

look at numbers in front of us and disregard our 

knowledge of how they were created, we would 

conclude that one is random and the other isn’t.6

This data-centric approach views randomness 

in terms of complexity and lack of pattern. In 

1965, while an undergraduate at The City Col-

lege of New York, Gregory Chaitin proposed this 

deinition and suggested that the randomness of a 
inite series of numbers could be measured based 
on the size of the smallest computer program that 

can generate the series7. If we wanted to write a 

program to output 1010101010101010, the small-

est set of instructions would be “print ‘10’ eight 

times.” For 1011101001010111, there is probably no 

algorithm shorter than “print 1011101001010111.” 

Since the examples are relatively short series, 

there isn’t a great difference in the size of the 

instructions needed to generate them. However, 

we could easily create a much larger series of 

numbers that follow the irst example’s pattern: 
“print ‘10’ one thousand times.” Now we have an 

instruction set that is 29 characters long that gen-

erates a number that is 2,000 characters long. We 

can establish that this series of 2,000 characters 

is not very random because the smallest possible 

program that can generate the series is so much 

smaller in size than the result. A very random 

number would require (as our 1011101001010111 

example did) a program that is very close in size 

to the data it generates.8 In essence, there are no 

shortcuts generating a random number because 

a random number has no patterns.9 

Deining randomness in terms of the data’s 
complexity was undoubtedly crucially inluenced 
by computer science and the impossibility of 

having computers algorithmically generate true 

random numbers. Impossible because the very 

fact computers generate the “random” numbers 

using formulas means that the numbers have a 

pattern. Computer-generated “random” numbers 

are referred to as pseudorandom in acknowledge-

ment of their algorithmic origin. Early in the his-

tory of computers it became apparent that not all 

pseudorandom number generators (PRNG) are 

of equal quality and, consequently, the numeric 

sequences they generate have varying degrees of 

randomness—some sequences are more random 

than others. This equating of “level of complex-

ity” with “level of randomness” is in contrast with 

the idea that randomness is an absolute state; that 

something is either random or not. 

The compressibility of data is affected by the 

data’s level of randomness. Most electronic iles 
(such as graphics, text, video, and sound) can be 
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compressed; algorithmically processed into a ile 
of smaller size. Generally speaking, the less varied 

the data, the greater the compression. To use an 

analogy, consider the text “See Jane run. Run Jane 

run. Run run run.” This can be summed up as 

“Check out Jane running.” That’s a compression 

of 42.5%. We were able to do that by removing the 

repetitions and patterns. However, this is a “lossy” 

compression; the compressed text maintains the 

meaning of the original, but cannot be restored 

to the original verbatim. We could do a lossless 

compression of the data: “1=run:See Jane 1. 1 Jane 

1. 1 1 1.” Using this lossless compression we were 

able to reduce the size by 15% (lossless methods 

provide less compression than lossy methods).

A ile of highly random data, however, cannot 
be compressed in a lossless manner—a com-

pression algorithm cannot ind any patterns to 
squeeze. This is not to say that programmers don’t 

regularly claim to have created an algorithm that 

will compress random data—they do in a manner 

reminiscent of cranks claiming to have invented 

a perpetual motion machine. However, none of 

these claims prove to be valid.10

 

Assert(Random == Information)

In Chaos Bound (1990), Hayles explores a proposi-

tion11 that a communication’s level of randomness 

is an indicator of the amount of information it 

contains. Surprisingly, the greater a communi-

cation’s randomness, the more information it is 

likely to contain. This is more understandable 

when we consider our data compression example 

from before. The “Dick and Jane” stories are 

highly repetitive and even a irst grader might 
wish for something more complex and varied. 

Increasing the denseness of information results 

in a greater level of textual complexity, a lower 

compressibility, and (by Chaitin’s deinition) 
greater randomness. 

We can increase the randomness/denseness of 

a communication (and consequently its compo-

nents’ informational probability) by compressing 

it. An example of such compression is removing 

the vowels from text: “t wld gt vry ld vry qckly 

f ths ntr chptr hd n vwls.” The compression re-

sults in an increase of informational content for 

each character in the message; the same amount 

of information is communicated in fewer char-

acters. One cost of this denser information is 

an increase in decompression time; reading the 

information will take more time than reading an 

uncompressed version.

Does an increase of randomness always in-

dicate a probable increase of information? If so, 

“xjblw9 fjmksdpgk kdo vnaie pxs fr” likely con-

tains more information than “There is nothing like 

a dream to create the future.12” To avoid this kind of 

absurdity, the information theorists who developed 

the concept of information probability further 

surmised that every communication contains a 

mixture of information and noise (i.e., meaning-

less or garbled data). As a message’s randomness/

complexity increases, the probability that its com-

ponents are informational increases. However, 

once a message reaches a halfway point in terms 

of randomness/complexity, the probability of in-

formation decreases and the probability of noise 

increases. So a message that contains very little 

complexity (“aaaaaaaaaaaaaaaaaaaaaaaaaaa”) 

and a message of extreme complexity (“WgAx;.

UJ,B2Lf.WSI2;8FzRGeX”) both have low prob-

abilities of containing information. 

These theories lead to the conclusion that 

a communication is likely to have the greatest 

concentration of information when the message is 

partially surprising and partially expected (Hay-

les, 1990). Likewise, artwork utilizing stochasti-

cism is likely to have the greatest impact when the 

result is a mixture of pattern and unpredictability. 

That mixture is largely determined by how much 

control is maintained by the artist.

Control & Generative Art

Stochastic methods are often used as a way of 

relinquishing control. The Dadaists did so to 
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emphasize the absurd. The Surrealists gave up 

conscious control as a way of tapping into the 

subconscious. Artists creating generative art give 

up control to stochastic processes to simulate the 

complexity of nature or the spark of creativity.

Generative art is art that was created accord-

ing to an algorithm. Dadaist poems created using 

Tzara’s directions (from earlier in this chapter) are 

generative artworks. Golan Levin (Zanni, 2004) 

argues that interactive and generative artworks are 

about “creating an illusion of control: the sense 

that the ‘artist’ has relinquished authorship to the 

user, or to some clever algorithm. In fact, this is 

a myth.” In many cases Levin is correct—the 

truly deining characteristic of most generative 
artworks are the elements over which the artist 

maintains control. 

It would seem that the percentage of decisions 

that are determined by stochastic data would 

directly correspond to the level of control abdi-

cated by the artist, but this isn’t the case. More 

signiicant than the number of random choices, 
is the breadth of variety that is manifested by 

those decisions. How the artist frames random-

ness can greatly throttle or expand an artwork’s 

unpredictability. 

For example, Jared Tarbell’s Node Garden 

(2004)13 uses a very large number of random 

choices every time it generates an image. How-

ever, those choices do not add up to works that 

look signiicantly different.

If the goal of generative art is the creation of 

a series of distinct artworks, then Node Garden 

would have to be considered ineffective. However, 

evaluating Node Garden using that criterion would 

be judging it against aims it did not have. 

For generative artworks like Node Garden, 

randomness is a collaborator who does the grunt 

work—in Node Garden’s case, randomness takes 

care of the tedious work of placing all the picture’s 

elements. As long as the artist’s vision is main-

tained, the particulars of the execution do not 

matter too much. This is the approach Sol LeWitt 

took for his wall drawings. For those drawings, 

LeWitt limited his involvement to providing writ-

ten directions for executing the drawings. The 

physical act of creating the artworks was relegated 

to teams of workers, whom LeWitt called drafts-

men. In recognition of the collaborative aspect of 

the art, LeWitt always credited the draftsmen in 

the exhibition catalogs. One execution of LeWitt’s 

drawing directions varies from another based 

upon the walls’ dimensions, the workers’ skill 

and care, and how freely the instructions14 were 

interpreted.

Time-Based Art

When creating Node Garden, Tarbell’s focus was 

developing an algorithm that gives a particular 

(and predictably) pleasing result, not an algo-

 

Figure 2.

Images used with permission of Jared Tarbell
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rithm whose output would continually surprise 

the viewer. Perhaps artworks like Node Garden 

are best thought of as a kind of performance. We 

wouldn’t consider a particular performance of a 

play to be a unique work of art, even though it dif-

fers slightly from every other performance. Still, 

there is excitement and reward in seeing a live 

performance just as there can be real enjoyment 

in seeing Node Garden generate a new image in 

response to a computer mouse click.

A sense of time-based performance is present 

in many stochastic artworks, even those that are 

static and do not continually change. The height-

ened presence of time is due to its arrow being 

particularly straight in stochastic artworks. Part 

of relinquishing decisions to chance and random-

ness is that once the die is cast, the outcome is 

accepted without revision. 

Erik Sommer15 is a painter who uses mixtures 

of concrete and paint that peel off his canvases. 

Sommer regards the peeling as random and, un-

like Jackson Pollock, does not “deny the accident” 

(Karmel, 1999, p. 22). Sommer does, however, 

rework the canvases until he is happy with the 

concrete’s chance effect. A process that is random 

in the same way that repeatedly rolling a die until 

it comes up six is random.  

By not fully committing to the chance outcome, 

Sommer’s use of stochasticism is less constrained 

than Tarbell’s. Sommer can comfortably allow a 

Erik	J.	Sommer,	Taught,	2007,	48”	x	48”,	mixed	medium	
on canvas. Collection of the artist.

Figure 3.

Figure 4.

 
 

Mailed Paintings, Karin Sander. Photo © D'Amelio Terras Gallery, New York.
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greater range of unpredictability because he can 

revise outcomes that go too far astray. In some 

ways chance is a more marginal element in Som-

mer’s art—perhaps an unnamed assistant rather 

than a full-ledged collaborator. While Sommer’s 
approach does harness chance’s potential for unex-

pected outcomes, it also mitigates the excitement 

of a live, unedited performance. 

Andy Goldsworthy’s Sheep Paintings (1997-

1998) achieve a greater sense of performance. 

The Sheep Paintings were created by laying out 

canvases in sheep pastures. Each canvas was 

“painted” by the marks of mud, feces, and urine 

surrounding a cleaner area that was protected by 

the placement of a salt lick. Goldsworthy (2007) 

says, “Whilst each painting is a result of chance, 

the choice of place, time, canvas size, food source 

and container radically affect its inal appear-
ance. The making of these decisions gives me 

the opportunity to work the canvases, albeit at a 

distance” (p. 153). Goldsworthy also notes that 

the work taught him “the importance of knowing 

when not to touch” (p. 153). Goldsworthy retains 

the artistic decision of when to remove a canvas 

from the ield. If he chose to, he could also make 
an editorial selection of which canvases to exhibit 

without compromising the project’s concept. 

In contrast, the absence of the artist’s hand 

is central to Karin Sander’s16 Mailed Paintings 

(2007). The paintings are pre-stretched, store-

bought canvases that Sander mails unwrapped 

from various international locations to the art 

gallery. As the canvases are scuffed, stickered, 

and banded, they become a diary of their journeys. 

The viewer is very aware of the works’ passage in 

time and place. If Sander were to intervene and 

adjust the aesthetic of any of these works, they 

would be wholly compromised—it would be as 

if a singer’s live performance was lip-synced to 

another vocalist’s voice. 

Sascha Pohlepp’s17 Buttons (2006) is another 

artwork with a strong connection to time. But-

tons is a camera without optical parts. When the 

camera’s button is pressed, the camera does not 

record an image, instead it records the time. It 

then wirelessly searches the Internet for photo-

graphs that were taken by someone else at the 

very moment of the button press. Pohlepp (2006) 
explains, “After a few minutes or hours, depending 

on how soon someone else shares their photo on 

the web, an image will appear on the [camera’s] 

screen.” The photos are selected using a chance 

connection—two people happening to press a 

camera button at the same moment. Regarding 

the selected photograph, Pohlepp says, “In a 
way, it belongs half to the person who had pressed 

the button and still remembers that moment. 

Because of that connection, the photos are never 

dismissed as random, no matter how enigmatic 

they may be.”

DSCN slide show (2002) by Philippe Blanc 

also makes connections based on photograph 

uploads. Each time a photo is taken using a digital 

camera, the image is given a default name. For 

Images	by	Sascha	Pohleep.	Used	with	permission.

Figure 5.
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example, the very irst photo taken with a new 
Nikon™ camera is given the name DSCN001. 

Blanc created a program to search the Internet for 

photographs with the DSCN001 name. The result 

is a slide show of photographs connected by the 

shared experience of using a new camera for the 

irst18 time. Neither Buttons nor DSCN slide show 

generates new artwork. Instead the projects act 

as automated curators and select work based on 

a chance association. 

Sometimes a work of art is completely de-

terministic yet is experienced by the viewer as 

being stochastic. This is the case for an on-going 

performance of John Cage’s Organ2/ASLSP (1987), 

a musical composition in eight parts. Organ2/

ASLSP’s sheet music comes with instructions 

that the performer should omit one of the parts, 

repeat one of the parts, and play the composi-

tion as slowly as possible19. The work’s premiere 

lasted twenty-nine minutes. A performance that 

began on September 5, 2001 is intended to stretch 

out the music for 639 years (Wakin, 2006). The 

extended performance is located in a disused 

church in Halberstadt, Germany, the town where 

an organ with the irst chromatic keyboard layout 
was built in 1361 (639 years prior to the originally 

planned start of the 639-year performance). The 

irst twenty months of the performance were silent 
due to Organ2/ASLSP beginning with a rest. The 

irst chord (two G sharps and a B in between) was 
struck on February 5, 2003 and lasted seventeen 

months. Small weights hold down the keys for the 

notes that are being played and the organ’s pipes 

are changed to correspond. 

Every note is predetermined, yet the audience 

has arbitrary musical experience. Whichever note 

happens to be playing is what the listener hears.

Control & Generative Music

Musikalisches Würfelspielen (musical dice games) 

were popular in Europe during the late 18th and 

early 19th centuries. Using published rules and a 

randomizer (such as dice or tops) players selected 

pre-composed musical phrases to create random 

musical compositions. Several such games were 

spuriously published under Mozart’s name20. One 

such fraud, dating from 1787, used two six-sided 

dice to determine sixteen minuet measures and 

one six-sided die to determine six trio measures. 

This calculates out to 1116 * 616 (or 1.2329) possible 

compositions, though to the listener many of these 

variations would sound excruciatingly similar.

While the dice game has many possible 

variations, the musical phrases provided by the 

composer/game-designer maintain a high degree 

of control over the listener/player experience. In 

contrast John Cage typically relinquished much 

more control in his stochastic compositions. He 

viewed this as releasing himself “from what I had 

thought to be freedom, and which actually was 

only the accretion of habits and tastes” (Pritchett, 

1988). 

Beginning in the 1950s, Cage generated 

random music by tossing coins and using the I 

Ching fortune-telling process. Cage would start 

by randomly determining the broadest aspects 

of a composition (e.g., the key or time signature) 

and then proceed to the individual notes.21 While 

Western music conventions may impose a general 

structure on these compositions, they are much 

more freeform than the Musikalisches Würfel-

spielen compositions. Cage’s Music of Changes 

(1951), which was composed in this manner, does 

occasionally have the brief musical phrase that 

sounds conventional, but taken as a whole it is 

reminiscent of a cat walking on a keyboard. Com-

paring Musikalisches Würfelspielen and Music of 

Changes shows that the randomness of the input 

(which is the same for both) is only incidental to 

the resulting unpredictability. The greater factor 

is the process established by the artist. 

Another Cage composition, Imaginary Land-

scape No. 4 (1951) was composed in much the same 

way as Music of Changes. However, it introduced 

the added stochastic element of being written for 

twelve radio receivers instead of a piano. Each 

receiver has one performer to adjust volume and 
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another performer to adjust the frequency. Music 

of Changes incorporated a random composition 

technique, but does not change with each perfor-

mance.22 In contrast, Imaginary Landscape No. 

4 is tied to the time and locale of the concert so 

that each performance is entirely uniue.

Seeds & Pseudorandom Number 

Generators

Mandala #2 (2000), a sculpture by Marc 

Berghaus23, consists of a grid of sixteen dice under 

a bell jar. Gears driven by a hidden motor turn the 

dice at different speeds. Berghaus (2007) explains, 

“Due to my use of unusual gear ratios (say, 1:1.7, 

rather than 1:2) in the gears that connect the drive 

shafts to the dice’s axles, very few of the cycles 

line up again at once, and it becomes impossible 

to predict the patterns of all the tumbling dice, 

despite the fact that all actual randomness has 

been stripped from them” (p. 49). 

The rotation of Mandala #2’s dice is completely 

deterministic, so it may seem a poor simulation 

of randomness. And perhaps it is. But it is a very 

good, real world representation of how computers 

generate random numbers. 

As mentioned earlier, computers cannot cre-

ate true random numbers and instead they use 

formulas to generate pseudorandom numbers. 

Pseudorandom numbers are important for ev-

erything from shufling the deck of a solitaire 
game program to negotiating communication on 

a computer network24. 

When preparing to use a pseudorandom num-

ber generator, programmers start by giving it a 

“seed” value. This seed is an arbitrary number used 

by the PRNG’s algorithm to generate the series 

of numbers25. Without this seed number, a PRNG 

would generate the same series of numbers each 

time it was restarted. In a way, “the pseudorandom 

generator does not actually generate any random-

ness; it stretches or dilutes whatever randomness 

is in the seed, spreading it out over a longer series 

of numbers like a drop of pigment mixed into a 

gallon of paint26” (Hayes, 2001, p. 302).

Given this characterization of the seed as 

the source of the PRNG’s randomness, one may 

wonder how a seed’s value is determined since 

computers innate lack of randomness was the 

issue in the irst place. One approach is to use 
input from outside the computer (such as user 

input) to establish the seed. But by far, the most 

common technique for creating a seed value is to 

use the current time (which on UNIX computers 

is expressed in the number of seconds that have 

elapsed since January 1, 1970). 

Neglecting to seed a PRNG results in it giving 

the same default series of numbers each time it 

is restarted27. Likewise, a particular seed value 

will always return the same series of numbers. 

Years ago the author of this chapter programmed 

© Marc Berghaus. Used with Permission. Photo by Doug 

Koch.

Figure 6.
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Sanctum, a two-person online game. Every time 

a new game was started, the network would pass 

the same number to both players’ computers to use 

as a seed value. That way, every time a random 

number was used in the game (for example, to 

determine whether an arrow hit a monster), both 

players’ computers would have identical outcomes. 

Very occasionally, an error in the program would 

cause one player’s computer to use a random 

number where the other player’s didn’t, with the 

result that one computer would be a step ahead in 

the series of random numbers. Once that occurred, 

every following use of a random number would 

cause the game state on the two computers to 

diverge further apart. Eventually the two players 

would be seeing completely different game states 

(an occurrence reminiscent of the science iction 
genre of  “alternative histories” where a slight 

change in history—in this universe or a parallel 

one—results in a very changed present).

Hardware Random Number 

Generator

Given the limited randomness provided by 

PRNGs, one might think that real world random-

izers such as dice would provide better results. In 

1965 statistician Frederick Mosteller had a unique 

opportunity to test this when Willard H. Longcor 

walked into his ofice and offered to record the 
results of a few million die tosses (Peterson, 1998). 

Mosteller compared the results to what would be 

predicted by distribution theory and found that 

Longcor’s throws matched very closely (and the 

few places where it diverged pointed to errors in 

the theory). Coin lipping has also been extensively 
tested. During World War II an English mathema-

tician spent his time in a prisoner of war camp 

tossing a coin—he came up with 5,067 heads in 

ten thousand tosses (Peterson, 1998).

But these accurate results seem to be the excep-

tion. The best pseudorandom number generators 

can outperform (in terms of tests of randomness) 

some physical number generators (Hayes, 2001). 

Physical number generators’ faults come from the 

same source as their virtue; the messiness of real 

world. That messiness can provide back doors for 

patterns to sneak in. 

For example, British biometrician W. F. R. 

Weldon and his wife Florence spent a good deal 

of time rolling dice and recording the results to 

demonstrate the laws of probability. However, in 

1900 the English mathematician Karl Pearson28 

analyzed the results of 26,306 of the Weldons’ rolls 

and found that they broke the rules of probability—

there were too many ives and sixes. 
In 1977, Doyne Farmer fell in with a group 

of graduate students who were pioneering the 

ield of chaos29 at the University of Santa Cruz. 

Farmer was obsessed with using chaos theory 

to beat roulette30 and spearheaded group forays 

into casinos with a computer hidden in a pair of 

shoes. While at a roulette table, information about 

the roulette tables spin, release of the ball, and so 

forth would be entered into the computer using 

toes. The computer would predict in which eighth 

of the wheel the ball was liable to stop and would 

transmit the results to a third shoe (worn by another 

member of the group) who would then place a bet. 

Apparently the system worked well enough for 

the group to make money (Kelly, 1995).

In 1955 the Rand Corporation published A 

Million Random Digits with 100,000 Normal 

Deviates, a 600-page book31. Rand used an elec-

tronic “roulette wheel” to generate the numbers. 

However, the machine proved to not be statistically 

random, despite repeated tinkering and modiica-

tions. Eventually Rand had to succumb to mixing 

and mathematically manipulating the numbers 

to have them pass statistical testing (Peterson, 

1998 and Hayes, 2001). Rand’s roulette table was 

in reality an electronic machine that generated a 

stream of bits (1’s & 0’s). In a twenty-ive page 
introduction to the book, the method of number 

generation is outlined in order to assure the reader 

of the data’s randomness. This introduction attri-

butes the source of the bits to a “random frequency 

pulse source.” Rand provided no further details, 



96  

Randomness, Chance, & Art

but the Computer Handbook (Huskey & Korn, 

eds., 1960) surmises that it was probably a Geiger 

counter and a low-grade radioactive material.

The same approach is taken by quite a few 

hardware random number generators—random 

number generators that don’t use (or at least don’t 

exclusively use) algorithmic methods for gener-

ating a number. John Walker’s HotBits website32 

provides random numbers that are generated by 

measuring the nuclear decay of Cæsium-137. His 

method is to irst detect the length of time between 
two electrons being given off by the radioactive 

material. A second set of electrons is timed and 

the two durations are compared. If there irst set 
of decays has the shorter time interval a zero is 

generated, if it is longer then a one is generated. 

The resulting binary data is then converted to 

decimal numbers (e.g., 1001 would become a 9). 

This technique generates about 200 digits per 

second.

A less radioactive system is used at Random.

org. The website provides random numbers gener-

ated using atmospheric noise (e.g., thunder). Yet 

another web-based random number provider is 

LavaRnd33. LavaRnd uses a web-cam with the lens 

covered. In the absence of light, the CCD chip on 

the video camera creates chaotic thermal “noise” 

which is put through a hash algorithm to remove 

unwanted, predictable patterns and is converted 

into random numbers. Atmospheric noise, video 

camera noise, and the luid dynamics of LAVA 
LITE® lamps are all chaotic sources. A chaotic 

process is one in which minor variations in a 

process’s initial conditions result in wildly differ-

ent effects (i.e., the apocryphal “butterly effect” 
where the lap of a butterly’s wing in a Brazil 
leads to a tornado in Texas). Chaotic systems often 

appear to be random even though their behaviors 

are entirely deterministic and based upon the 

initial conditions. So a random purist might argue 

that hardware random number generators using 

chaotic events are not truly random. This would 

leave just quantum event based (i.e., radioactive 

decay) random number generators as being truly 

random, however even that is in question. There 

is an ongoing debate as to whether even quantum 

events are truly random or simply chaotic. This 

is the kind of conundrum that led Knuth (1981) 

tools.

©2008 Nina Katchadourian. Used with permission. Courtesy of the artist and 

Sarah Meltzer Gallery, New York

Figure 7.
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to pragmatically accept that “being ‘apparently 

random’ is perhaps all that can be said about any 

random sequence anyway” (p. 3). Even if one 

accepts quantum events as random, the numbers 

the generate may not be due to patterns sneaking 

from biases or laws in the detection tools.
Nina Katchadourian’s34 Talking Popcorn 

(2001) translates the sounds of popcorn popping 

into a glossolalic babble. The sculpture consists of 

a microphone housed in a movie house popcorn 

machine. A hidden computer interprets the pop-

ping as Morse code and provides simultaneous 

spoken translation through a computer-generated 

voice. Talking Popcorn determines the Morse code 

by measuring the silences between popcorn pops 

in very much the same manner that radioactive-

based hardware random number generators com-

pare the durations between Geiger counter clicks. 

Talking Popcorn equates the longer silences as 

Morse code dashes and shorter silences as dots. 

These silences are measured relative to the run-

ning average speed of the popping so that as it 

speeds up, the pops don’t become interpreted as 

an indistinguishable series of Morse code dots. 

The adjustment of popping speed smoothes out 

the particular, bell-curved popping cadence of 

a batch of popcorn and normalizes it into raw 

randomness. Talking Popcorn removes the real-

world characteristic of popcorn building to a 

crescendo and then dropping off to the last few 

reluctant pops. Where some artworks, such as 

Hawkinson’s Emoter, might be editorially clas-

siied as random (because the cause and effects 
are opaque to the viewer) even though it is actu-

ally based on chance events, Talking Popcorn is 

truly random through and through. There is no 

carryover of meaningful information because the 

triggering data’s patterns have been smoothed out 

in much the same manner as LavaRnd does with 

its thermal noise events and the Rand Corporation 

did with its “frequency pulse” data.

Talking Popcorn’s generation of information is 

reminiscent of a story that Hayles describes in her 

introduction to Chaos Bound. The story35, which 

comes from Stanislaw Lem’s The Cyberiad, can 

be seen as a parable illustrating the relationship 

between chaos and information. In the tale, two 

constructors36 are captured by a space pirate who 

pillages and hoards information. To gain their 

freedom, the constructors build a “Demon of 

the Second Kind”37 for the pirate. The demon is 

designed to interpret the movement of stale air 

molecules as information. Whenever the motion of 

the molecules adds up to something intelligible, the 

Demon transcribes it onto paper tape using a tiny 

diamond-tipped pen. The pirate underestimates 

the amount of information contained within the 

chaotic motion, and he is soon buried in a mountain 

of paper illed with useless information: all the 
words that rhyme with spinach, why fan-tailed 

leas won’t eat moss, the sizes of bedroom slippers 
available on the continent of Cob, how Kipling 

would have written the beginning of The Jungle 

Book 2, et cetera. 

The idea that we can be paralyzed by an 

overabundance of information seems even more 

relevant today (with the constant inlux of informa-

tion from the Internet, text messaging, emails, cel 

phones, and MP3 players) than when Lem wrote 

the story in 1967 or when Hayles discussed it in 

©2008 Nina Katchadourian. Used with permission. Cour-

tesy of the artist and Sarah Meltzer Gallery, New York

Figure 8.
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1990 (a few years before the arrival of Mosaic, 

the irst graphical web browser).
Unlike Lem’s Demon of the Second Kind, 

Katchadourian’s Talking Popcorn does not ilter 
out the babble. In this regard, it is more like 

Borges’s “The Library of Babel” which describes 

a universe composed of hexagonal, book-lined 

rooms. The narrator of the story posits that each 

book is unique and that every possible combination 

of text exists.38 Since every possible book exists, 

the Library must contain the ultimate truth. There 

would also be many slight variations on the truth39, 

and even more books illed with lies, and even 
more variations of those lies. But overwhelmingly 

the Library contains books of gibberish. 

FUTURE TRENDS

The Internet provides a huge reservoir of data; 

a channel for receiving interactive stimulus; and 

a cheap and convenient platform for publishing 

art. These characteristics are attractive to artists 

exploring stochastic art, so the Internet is likely 

to continue to develop as an environment for 

random and chance-based art. 

Physical computing—the use of microcon-

trollers and electromechanical devices—often 

uses chance and randomness (as seen in Raaf’s 

Translator II: Grower). Recent innovations such 

as the Processing programming language and 

the Arduino microcontroller boards have made 

the electronics and programming required for 

physical computing much more approachable 

and popular. This trend is likely to continue. In 

the same way that creating a webpage has gone 

from a task for programmers to something pre-

adolescents can do on social networking sites, we 

may see electronics development and the creation 

of electronics-based stochastic art become within 

reach of a more general public. 

CONCLUSION

The motivations for using stochastic elements in 

art can range from a desire to free the creative 

process from conscious concerns to wanting 

to mirror the frenetic pace of our data-soaked 

lives. Both random and chance occurrences can 

be effectively used in art, but using chance may 

lead to richer, more interesting artworks because 

it brings an element of the world and a greater 

potential for resonance than the sterile isolation 

of true randomness. 
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KEY TERMS

Algorithm: A set of well-deined instructions 
for completing a task. 

Chance: In this chapter “chance” refers to 

unpredictable, but deterministic, events. 

Chaotic: behaviors where minor changes in 

initial conditions can result in widely divergent 

results. Chaotic systems often appear random even 

though they are completely deterministic. 
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Deterministic: A situation where events are 

completely predictable based upon cause and 

effect. 

Generative Art: Art that is created accord-

ing to an algorithm. Generative art is typically 

intended to give the appearance of machine cre-

ativity.

Hardware Random Number Generator: A 

method for generating random numbers using 

a physical process, such as the nuclear decay of 

radioactive material. The generated numbers are 

often referred to as “true random” numbers in 

contrast with pseudorandom numbers generated 

by a pseudorandom number generator. 

Pseudorandom Random Number: A number 

that was generated using an algorithmic process 

called a pseudorandom number generator (PRNG). 

Because the numbers are created deterministically 

they have the appearance of randomness, but are 

not truly random.

Quantum: Used in this chapter to refer to 

subatomic processes.

Random: used in this chapter to speciically 
refer to unpredictable events that are completely 

self-contained and communicate no information 

(in contrast to “chance”).

Stochastic: having unpredictable characteris-

tics. Used in this chapter to refer to both random 

and chance events.

ENDNOTES

1 Later in this chapter we’ll discuss random 

number generators that uses quantum events 

(i.e., the nuclear decay of radioactive materi-

als).
2 52 times.
3 Lord Kelvin (1901) tried generating random 

numbers by drawing cards and reported, 

“The best mixing we could make in the bowl 

seemed to be quite insuficient to secure 
equal chances for all the billets [cards].” L. 

H. C. Tippet (1927) had a similar problem 

when he tried drawing a thousand cards from 

a bag: “It was concluded that the mixing 

between each draw had not been suficient, 
and there was a tendency for neighbouring 

draws to be alike.” The 1969 U.S. military 

draft lottery was lawed due to a strong 
reverse-correlation between the order in 

which the slips were put into the mixing bin 

(by calendar date) and the order in which 

they were drawn (Wetzel, 1998). In plainer 

English, potential draftees who were born 

later in the calendar year were placed into 

the mixing bin last and had a signiicantly 
higher chance of being selected for the 

draft.
4 www.raaf.org
5 Both series have a 1 in 65,536 (i.e., 216) 

chance of occurring.
6 The idea that randomness comes from a 

number’s method of generation rather than 

an inherent characteristic is what Knuth was 

driving at in his previously quoted state-

ment: “In a sense, there is no such thing as a 

random number; for example, is 2 a random 

number?” (Knuth, 1981)
7 A. N. Kolmogorov of the Academy of Sci-

ence of the U.S.S.R. independently proposed 

a similar idea at about the same time as 

Chaitin. Unbeknownst to Chatin and Kol-

mogorov, Ray J. Solomonoff of the Zator 

Company made a similar proposal in 1960 

as a method for measuring the simplicity of 

scientiic theories. (Chaitin, 1975)
8 The program we’re describing is not a gen-

eral-purpose number generator, but rather 

a program that is capable of generating a 

speciic series of numbers.  This is not the 
same as saying that the ile size of a pseu-

dorandom number generator (PRNG) is an 

indicator of its quality. It’s also important 
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to realize that never generating a number 

that contains a pattern (e.g., 101010) is not 

a virtue in a PRNG. Coincidental patterns 

are commonplace and a PRNG that iltered 
out such patterns would be weaker than one 

that allows them.
9 Chaitin’s theory is related to earlier re-

search on ciphers that was done by Claude 

Shannon, a pioneering information theorist 

who we’ll reference several times in this 

chapter. Ciphers are algorithms that use an 

arbitrary piece of information (called a key) 

to encrypt data. Shannon determined that 

it is impossible to decrypt a cipher without 

the key if the key is truly random and is the 

same length (or longer) as the data that was 

encrypted (Hayes, 2001).
10 Mark Nelson and Mark Goldman have issued 

separate challenges (with $100 and $5,000 

prize monies) on the comp.compression 

newsgroup to anyone who achieves such 

compression. To date, no one has been able 

to legitimately claim the money, though 

programmer Patrick Craig attempted to 

take advantage of a loophole in Goldman’s 

challenge.
11 The idea originated in an article by Claude 

Shannon and was interpreted and expanded 

upon in a commentary by Warren Weaver. 

See The Mathematic Theory of Communica-

tion by Shannon and Weaver (1949).
12 Victor Hugo, Les Miserables, 1862
13 www.complexiication.net
14 Bryan-Wilson (2003) cites LeWitt giving 

directions such as “The lines should be 

made a close together as possible. They do 

not have to be regular but would differ with 

each person who does them.” (p. 158)
15 www.erikjsommer.com
16 www.karinsander.de
17 www.pohlepp.com
18 Or 1,000th time since the default naming 

repeats after 999 photos.

19 Hence the ASLSP in the title: “As SLow aS 

Possible.”
20 Mozart does appear to have created an un-

published dice game that used the letters of 

a friend’s name to generate the composition 

(Noguchi, 1990).
21 Once such a system of rules is established, 

it doesn’t matter who executes them, human 

artist or machine. Cage eventually made 

extensive use of generative software, includ-

ing a coin-tossing program, written by his 

assistant Andrew Culver. A list of programs 

used by Cage can be seen at www.anarchic-

harmony.org/People/Culver/CagePrograms.

html.
22 Cage might argue that every musical perfor-

mance is a unique work. This is the concept 

of his 4’33”, a work in which the musicians 

play no notes, so the aural experience con-

sists of the ambient noises of the audience 

coughing, et cetera.
23 www.marcberghaus.com
24 When two nodes on a network are attempting 

to send data simultaneously we don’t want 

them to act like two cars trying to enter an 

intersection at the same time only to stop 

simultaneously, then try to enter the intersec-

tion at the same time again. To avoid such 

a scenario, the Ethernet protocol has both 

nodes pick a random number to determine 

how long to wait before trying to send data 

again. (Hayes, 2001)
25 A series of random numbers created by a 

pseudorandom number generator will begin 

repeating within 2n-1 results where n is the 

bit size of the seed number). A Sony PS3 

console runs at 218 gigaFLOPS—i.e, 218 

billion loating-point operations per second 
(Hermida, 2005). Assuming a 32-bit seed 

value and 100 loating-point operations for 
each generated pseudorandom number, a 

PS3 could run through the entire series of 

random numbers associated with a particular 

seed in 1.97 seconds. A 32-bit number has 
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4,294,967,295 possible seeds values (again, 

2n-1 results where n is the bit size), so it would 

take 268 years for a single PS3 to go through 

every possible series of random numbers. 
26 This idea of the PRNG’s randomness stem-

ming from the seed was expressed in the 

1980s by Manuel Blum.
27 A casino player once noticed that this was 

the case for a keno game. Each time the keno 

machine was powered off and back on, the 

number draw sequence repeated. The player 

won $600,000 as a result (Peterson, 1998).
28 At about the same time he analyzed the 

Weldons’ data, Pearson did twenty-four 

thousand coin tosses himself and came up 

12,012 heads (Peterson, 1998)
29 Chaos theory is more formally known as 

nonlinear dynamics. Later in this chapter 

we’ll compare chaos and randomness.
30 Claude Shannon (whose information theories 

are discussed earlier in the chapter), along 

with fellow Bell Labs researcher John L. 

Kelly, jr. and M.I.T. mathematician Ed Thorp, 

made a fortune in the early 1960s by suc-

cessfully applying game theory to roulette 

and blackjack in Las Vegas. (Poundstone, 

2005)
31 The book had recently become available as 

a reprint. It can also be downloaded for free 

at www.rand.org/pubs/monograph_reports/

MR1418/index.html.
32 www.fourmilab.ch/hotbits
33 www.lavarnd.org. Landon Curt Noll, one of 

the minds behind LavaRnd, was also part of 

the team that created the lavarand (LavaRnd 

and lavarand are not the same, despite their 

confusingly similar names). Lavarand was 

a Silicon Graphics project in the 1990s. It 

involved using captured images of LAVA 

LITE® lamps to generate random, 140-byte 

seed values for feeding PRNGs.
34 www.ninakatchadourian.com
35 The short story has the burdensome title of 

“The Sixth Sally, or How Trurl and Kla-

paucius Created a Demon of the Second 

Kind to Defeat the Pirate Pugg.” 
36 Constructors are magician-like sentient 

robots who can construct a contraptions 

(often artiicially intelligent) for almost 
any purpose. The Cyberiad has the uni-

verse alternating between being populated 

by biological and robotic beings—each of 

whom eventually succumbs to tackling the 

challenge of creating the other (only to be 

overthrown by their creation).
37 The first kind of demon is Maxwell’s 

Demon, a creature described in a thought 

experiment that challenges the Second Law 

of Thermodynamics (also known as the Law 

of Entropy).
38 It is further detailed that every book has 410 

pages, each page has forty lines, and each 

line approximately eighty black characters. 

There are twenty-ive “orthogonal symbols” 
consisting of a space, period, comma, and 

twenty-two letters. That calculates out to 

251,312,000 possible books (or, as the scientiic 
calculator on my Macintosh puts it, “Inin-

ity”). 
39 There would be 1,312,000 books that vary 

by one character and 1.72*1012 books that 

vary by two characters.


